
Page | 1 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved. FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Light-field Display Architecture and the
Complexities of Light-field Rendering

Page | 2 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

FoVI 3D

• FoVI 3D has a proven light-field display architecture for large format interactive
light tables
– Developed with support from the Department of Defense

◦ DARPA
◦ AFRL
◦ ARL
◦ Navy

– No glasses, head tracking, or “tricks” required for naturally viewing 3D images
• Spin out from Zebra Imaging whose sole purpose is the development of dynamic

light-field displays
• Multiple interactive light-field prototypes being utilized in DoD laboratories to

derive requirements, understand the human machine interface, and determine the
efficacy of natural 3D visualization

Thomas Burnett
A founder and primary investigator for FoVI3D. ~15 years experience developing rendering
solutions and architectures for static and dynamic light-field display systems.
tburnett@fovi3D.com

mailto:tburnett@fovi3D.com�

Page | 3 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Light-field Display in the Movies and Media

Page | 4 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Significance of Light-field Displays

• Human binocular vision and acuity and the accompanying 3D retinal processing of the human eye
and brain are specifically designed to promote situational awareness and understanding in the
natural 3D world.

• The ability to resolve depth within a scene, whether natural or artificial, improves our spatial
understanding of the environment and as a result reduces the cognitive load accompanying the
analysis and collaboration on complex tasks.

• A light-field display projects 3D imagery that is visible to the unaided eye (without glasses or head
tracking) and allows for perspective correct visualization within the display’s projection volume.

• Binocular disparity, occlusion, specular highlights and gradient shading, and other expected depth
cues are correct from the viewer’s perspective as in the natural real-world light-field.

Chrysalis, 2007

Page | 5 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Light-field Radiance Image

A hogel is a radiance
image for a single
micro-lens. Light-field
displays require many
hogels and thus
extremely large
radiance images.

Page | 6 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

DARPA Urban Photonic Sand-table Display (UPSD) Program

Four-phase program to develop dynamic 3D holographic displays

 Phase 1: Demonstration prototype – 2006 Apr
– Developed initial technologies for dynamic 3D
– Designed and built technology “Demonstrator” POC display

• One-sq.ft. monochrome display; 10-mm resolution

 Phase 2: Advanced technology – 2007 July
– 7x quality improvement
– 11x component cost reduction
– Scalable modularity

 DARPA Tech 2007 Conference:
– Successful technology demonstration

 Phase 3: Large non-color alpha prototype – 2008 June
– Prototype: ~1 meter diagonal with better image quality
– System consolidation & cost reductions

 Phase 4: Color alpha prototype – 2010 Dec
– Prototype: improved image quality & color
– Reduce cost: aggressive target for production cost (<$30/cm2)
– Increase manufacturability, yield & reliability
– Establish low-cost assembly/QA systems and processes
– Develop sophisticated operating software to support integration with initial customers
– Initial applications/integration driven by transition partners and customers

Gen1 prototype

Page | 7 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

UPSD Prototype

http://www.fovi3d.com/light-field-display/
http://www.fovi3d.com/multiview-rendering/

http://www.fovi3d.com/light-field-display/�
http://www.fovi3d.com/multiview-rendering/�

Page | 8 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Light-field Display Architecture

Photonics
Drive Electronics

Radiance Image (Hogel) Computation

HogelsLight-field
Display

Projection
Frustum

FoV

Model/
Scene

Situational
Awareness
Application

Light-field

Hogel
Optics

Sensor Data

In this example, live sensor
data is collected and a 3D
scene constructed for a
situational awareness
application by a host computer.
The 3D scene is passed to the
light-field display.

The light-field display renders all the perspective views
(hogels) regardless of the number or position of the viewers.
The hogels are projected through a microlens array to
construct a 3D light-field for all viewers simultaneously. In
essence, the light-field display is a large plenoptic projector.

Page | 9 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Light-field Radiance Image Rendering

Requires:
• 3D model/scene
• Model of the display image plane; a

mathematical model of the hogel lens array.
• Hogel dimensions
• Number of hogels
• Position/orientation of hogels
• Hogel FoV

Light-field radiance image rendering is the process of rendering all the
projected views for a light-field display for a given scene/model.

Host Application
Scene

The scene is distributed to
an array of PC/GPUs, each
of which renders a subset of

the light-field display
radiance image

A subset of the light-
field radiance image

Light-field Display interactivity and update rate are proportional
to the complexity of the scene/model, the power/configuration of

the rendering cluster and the size of the light-field display
radiance image. The Size, Weight, Power and Cost (SWaP-C)
of radiance image computation limits integration of the light-field

display.

Page | 10 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Radiance Image Rendering – Double Frustum Rendering

•The hogel image plane is a mathematical
model/description of the light-field display
image plane defined in model/scene space. In
essence, the hogel is a micro-image in a
plenoptic/light-field radiance image. A hogel
however, can represent ‘light’ on both sides of
the image plane.
•The hogel image plane can be placed anywhere
within the scene and as such can bisect a model.
•The projected hogel frustum defines the light
that would emanate from the center of each
hogel.
•This ‘light’ can represent model/scenery below
the image plane.
•When raytracing, the ray starts from the
outside of the scene and passes through the
center of each hogel, creating a ‘bowtie’ hogel
frustum.
•When double frustum rasterizing, the camera
is placed on the hogel center and rendered
downward, then the camera is flipped and
rendered upwards without clearing the depth
buffer. The upward camera is rendered
preserving triangles farthest from the camera,
thus closer to the viewer. When the two views
are combined via their depth map the hogel
‘bowtie’ frustum is created.

Page | 11 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Radiance Image Rendering – Double Frustum Rendering

Preserve detail closer to
viewer

Depth 0.0

Depth 0.5

Depth 1.0

Pros:
• Renders a hogel directly
Cons:
• Require two passes of

the geometry per hogel
• Very small framebuffers

void RenderBase::render(RenderState &rS,
 const Hogel &hgl,
 const CmdManager *pCmdManager)
{
glm::vec3 vE = hgl.vE();
glm::vec3 vD = glm::normalize(hgl.vU()); // render up the hogel normal
glm::vec3 vU = glm::normalize(hgl.vD());
glm::ivec2 vC = hgl.vC();
float zF = rS.zFar();
float zN = rS.zNear();

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glDepthFunc(GL_LESS);
 glFrontFace(GL_CCW);

 // back frustum, away from the viewer into the display
 if (1)
 {
 CmdLst::const_iterator jj = pCmdManager->cmdLst().begin();
 CmdLst::const_iterator jEnd = pCmdManager->cmdLst().end();

 rS.backFrustum(vE + glm::vec3(0,0,zN),-vD,-vU);

 glCullFace(GL_BACK);
 glDepthRange(0.5f,1.0f);

 while (jj != jEnd)
 (*jj++)->exec(rS);

 glFlush();
 }

 // front frustum, toward the viewer out of the display
 if (1)
 {
 CmdLst::const_iterator jj = pCmdManager->cmdLst().begin();
 CmdLst::const_iterator jEnd = pCmdManager->cmdLst().end();

 rS.fowardFrustum(vE + glm::vec3(0,0,-zN),vD,vU);

 glCullFace(GL_FRONT);
 glDepthRange(0.5f,0.0f);

 while (jj != jEnd)
 (*jj++)->exec(rS);

 glFlush();
 }
}

Page | 12 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Radiance Image Rendering – Oblique Slice & Dice Rendering

void renderObliqueView(hr::Camera &camera,
 const glm::vec2 &rA)
{
hr::Control control;

 glClear(GL_COLOR_BUFFER_BIT |
 GL_DEPTH_BUFFER_BIT);

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_CULL_FACE);

 {
 glm::mat4 mS;

 mS[2][0] = -glm::radians(rA.x);
 mS[2][1] = -glm::radians(rA.y);

 camera.warpView(mS);
 renderManager.render(camera,control);
 }

 glFinish();
}

Output Goes
to Slicer.

Pros:
• Large framebuffers, more efficient use of OTS

GPUs
Cons:
• Requires conversion from oblique pixel space

to hogels.
• Have to store, manage or re-render all the

oblique images for slicing

Page | 13 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Radiance Image Rendering – Oblique Slice & Dice Rendering

Oblique Renders

Hogels

Page | 14 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

SWaP-C: The Cost of Double Frustum Light-field Rendering

This render example shows a 50 x 25 array of (76 x 76 pixel) hogels rendered from a
burial scan model from the Smithsonian collection onto a 4K monitor with a NVidia
GTX Titan. Triangles are batched, with bounding volumes and with camera
frustum culling enabled; double frustum rendering at ~100 hps (~200 fps).

https://youtu.be/QCRXLzAThYQ

2K video:

50x20 Array 76x76 Dir. Res.
Hogels 1,250

SpDU 12.5

500x500 76x76 Dir. Res.
Hogels 250,000

SpDU 2,500

Size 1.444 Gpixels

Vertex transform bound…. Why??? We are making thousands of render calls
serially to very small viewports… serially....

500x500 512x512 Dir. Res.

Hogels 250,000

Size 65.635 Gpixels

https://youtu.be/QCRXLzAThYQ�

Page | 15 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Problem with using OpenGL and Modern GPUs for Light-field Rendering

• Many developers of novel display architectures have (or had) developed fix
function OpenGL shims to intercept draw commands and forward them to a
display specific renderer.

• However, there is no agreement on which OpenGL version and/or
functions to shim.

• Shaders make shimming with confidence nearly impossible or is so highly
restricted to the point where shaders may just emulate a fixed function
pipeline with little variation.

• There usually exists additional display specific extensions or APIs which
then reduce the portability even more.

• Modern OpenGL has a single active viewport and a single active view matrix
• Multi-viewpoint rendering becomes a responsibility of the host application

which must cache the render commands and then re-render the list for
each viewpoint.

• Meanwhile, the host application has stalled until all the views are rendered
because the render state can not change until all the views are rendered.

• The application developer has to know a lot about the target display.
• Number of views
• View specific projections and transforms
• Distortion shaders

Page | 16 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Light-field (Multi-View) Processing Unit (LfPU/MvPU)

The LfPU removes the dependency of using an array of OTS computers for rendering the
radiance image, greatly reducing the associated SWaP-C constraints for integration.

LfPU Backplane

LfPU LfPU LfPU LfPULfPU

Application
Host

The LfPU is
• Highly parallel radiance image rendering device
• Separated from the host CPU (or GPU) by an expandable, interconnect

framework and provides many views (hogels) into a scene per scene frame
• Physically located in close proximity to the modulation layer and has direct

write access to the modulation driver back-buffers
• The host application has no concept of light-field rendering. The host

application provides a view volume from which the image plane is derived.

This reduces the complexity of a LfPU interconnect framework and removes the
pixel transport bandwidth requirements required from OTS computation.

The LfPU interconnect framework will provide scene, command and sync
buffering and relay throughout the topology.

Neither the host system nor the individual LfPUs would have knowledge of the
interconnect topology or even the depth and breadth of the system.

Results in a display
architecture ready for
application integration

without a cluster of
OTS render boxes.

Light-field Display

Page | 17 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

MvPU Graphics API for Light-field Rendering – Where to Start?

• First, just to get started, reduce the complexity of the rendering API while providing enough support for
general purpose rendering:

• Battlespace
• Medical
• Oil & Gas
• CAD

• Therefore, what is the minimum required graphics definition to provide natural depth cues: Occlusion,
gradient shading, specular highlights, binocular disparity.

• Minimal light-field rendering
• Phong shading
• Texture mapping

• Strict material definition
• One vertex list definition

• Vertex, Normal, TexCoord
• Support for transparency (1 or 2 blend modes?)

• Add high level support for accelerated/advanced display rendering
• Segmentation into background and foreground geometry
• Bounding volumes for view culling as part of the vertex list definition
• Build in support for dynamic geometric/texture level.
• Provide cache management and synchronization for independent display render frame rates.

• Require pre-caching of texture and geometry before render cycles. Changing the geometric/texture
definition is not permitted during rendering.

Page | 18 FoVI 3D Propriety Information. Copyright 2016 Zebra Imaging. All Rights Reserved.

Heterogeneous Visualization

• The host application defines a render view volume, not a single view point.
• The render code behind the API queries the display device for the correct render transforms,

viewpoints, etc.
• Rendering won’t be in a ‘cloud’.

• Implies that the cloud knows too much about the downstream device.
• Very costly to send images.

• Physics may be in a ‘cloud’, geometry will be cached local to the device.
• Implies that draw commands will be handles and transforms – bind and render
• Devices will provide views within a global application/simulation world
• Any distortion corrections/shaders are a function of the display device.

Physics Simulation

	Slide Number 1
	FoVI 3D
	Light-field Display in the Movies and Media
	Significance of Light-field Displays
	Light-field Radiance Image
	DARPA Urban Photonic Sand-table Display (UPSD) Program
	UPSD Prototype
	Light-field Display Architecture
	Light-field Radiance Image Rendering
	Radiance Image Rendering – Double Frustum Rendering
	Radiance Image Rendering – Double Frustum Rendering
	Radiance Image Rendering – Oblique Slice & Dice Rendering
	Radiance Image Rendering – Oblique Slice & Dice Rendering
	SWaP-C: The Cost of Double Frustum Light-field Rendering
	Problem with using OpenGL and Modern GPUs for Light-field Rendering
	Light-field (Multi-View) Processing Unit (LfPU/MvPU)
	MvPU Graphics API for Light-field Rendering – Where to Start?
	Heterogeneous Visualization

