LIGHT FIELD DATA MANAGEMENT AND TRANSMISSION FOR MEDIA PRODUCTION

Use Cases and Requirements

Siegfried Fößel, Joachim Keinert, Frederik Zilly

CONTENT

- Introduction
- Use cases and potential of lightfield based media production
- Processing Pipeline and Derived Requirements

- Standard cameras capture light rays dependent on
 - Iris (Aperture)
 - focal length (FOV)
 - exposure time
- and rebundle the light rays based on the
 - focal point

- Microlens-Array with one sensor (Insect-Eye)
- Main lens with multiple sensors and microlensarrays

- Cameraarrays in fixed arrangements
- Freely positioned cameras

- Compromise between captured space of light field, density of sampling and necessary computation
- Dense sampling (camera with microlenses) allows
 - Easy data processing without depth map calculation by combining of light rays from different shots
 - Avoiding of artefacts as no light rays are missing
- Sparse Sampling (camera arrays) allows
 - Larger space to be captured
 - Enables more flexibility for visual effects

Motivation

Displays Today

Motivation Displays Tomorrow

Motivation

The very same needs in media production!

- Continuously increasing amount of computer generated special effects using 3D modeling software
- Best description of reality by natural content
- Natural content does not provide this editing flexibility
- Hampers intuitive story telling

The solution: Lightfields

Different views permit to react to user movements

- Virtually reposition the camera
 - Rendering in X,Y,Z-Direction
 - Create "Vertigo-Effect" / Dolly-Zoom
 - Create "Matrix-Effect" / Camera path in freeze frame
 - Create stereo pairs, choose inter-axial distance in post
- Reposition the Depth-of-Field
 - Change position and width of DOF
- Depth-based relighting

Example Stop-Motion Production with 16 Cameras

Output of One Individual Camera

Output After Lightfield Rendering

More Lightfield Visual Effects Relighting

Capture

Rectification

Disparity

Rendering

Lightfield Processing Pipeline Support of Varying Array Architectures

Support of Varying Array Architectures

Capture

Rectification

Disparity

Rendering

Lightfield Processing Pipeline Support of Varying Array Architectures

Capture

Rectification

Disparity

Rendering

- Heterogeneous Architectures
 - Different image sizes
 - Different bit depths and color spaces
 - Support of RGB and RAW capture
 - 2D grids with different layouts, but not necessarily regular

Need of Dedicated Meta Data

Corresponding pixels are in the same row or column

Lightfield Processing Pipeline Need of Dedicated Meta Data

Capture

Rectification

Disparity

Rendering

- Need of dedicated meta data
 - Approx. camera positions
 - Approx. camera distances
 - Time codes (in case capture start times differed)
- Sometimes need
 - Focal length, pixel size, ...

Lightfield Processing Pipeline Storage of Disparity Maps

Helps to interpolate a sparse lightfield into a dense one

Lightfield Processing Pipeline Storage of Disparity Maps

Capture

Rectification

Disparity

Rendering

- Takes a lot of time, error prone
- Need for direct storage
- Subpixel accuracy
- Associated meta data for interpretation (base line)
- Positive and negative signs
- Min. value range: -8k .. 8k
- Mixed pixels -> Multiple values

NUKE Data Management

Capture Rectification Disparity Rendering

- Post production requirements
 - Storage of intermediate results for time efficient reprocessing of parameter changes
 - Individual images for random access
- High data quality
 - Capture: 10-16 bit (integer)
 - Rectification and following steps: 16 bit or even 32 bit float
- High resolutions (2k-4k)

Lightfield Processing Pipeline NUKE Data Management

- Example project for a 5x5 still frame
 - 5k material

NUKE Data Management

- Example project for a 2x3 array sequence with 100 frames
 - 5k material

Random Access for Rendering

Capture

Rectification

Disparity

Rendering

VertigoEffect

Random Access for Rendering

Capture

Rectification

Disparity

Rendering

- **Different Strategies**
 - **Depth based**
 - Image based
- Depth based rendering leads to significant data reduction
- Compatible with post production environments
- High dynamic range and bit depth for good quality (i.p. relighting)

Lightfield Processing Pipeline Offline Rendering

Capture

Rectification

Disparity

Rendering

- Different Strategies
 - Depth based
 - Image based
- High dynamic range and bit depth for good quality (i.p. relighting)

Online Rendering

- Real-time processing possible with simplified rendering algorithm
- Currently only still image
- Problem of handling the large data volumes

Galaxy S7 edge | S7

Much higher computation power

Lightfield Processing Pipeline Oculus Rift Demo

Captured by a portable system -> Still lower quality

Demo System

- Input data
 - RGB 9x1920x1080x3x25=1.3 Gbytes/s
 - Disparity: Same size (Subpixel accuracy)
- PCIe 3 capacity with 4 lanes: 4GByte/s (brut)
- More interactivity requires more images in the array
- Hard disk is the limiting factor

Time Frame

Future Has Started ... (Making Of "Coming Home")

Time Frame

Future Has Started ... (Making Of "Coming Home")

Conclusion about Lightfield in Media Production

- Novel visual effects in post production for natural content
- Requires multiview capture
 - Heterogenous architectures
 - Dedicated meta data
 - Disparity data
 - High dynamic range
- Proof of concept films available
- Several technology building bricks still missing
- Need of appropriate storage format for post production

Thank you for your attention!

Have a nice day!

Joachim Keinert Joachim.keinert@iis.fraunhofer.de

