

SMFoLD Introduction and Overview

Chris Chinnock Insight Media

Workshop Support

- Insight Media
- Air Force Research Laboratory (AFRL)
- Third Dimension Technologies
- Oak Ridge National Lab

AFRL Identified Issues

- 3D Sensor Data Increasing Dramatically
 - LiDAR, SAR, plenoptic camera, stereo or multi-view to 3D
 - 3D models (actual and created)

3D Visualization Needed to Improve Productivity

- Stereoscopic 3D (S3D) not acceptable
- Field of Light Display (FoLD) is desired

Lack of Streaming Model is Barrier to FoLD Adoption

• Proprietary hardware and software

AFRL Objectives

Develop Display Agnostic 3D Streaming Media Model

- Includes scene description and transmission format
- Allows for flow and POV control
- Optimized visualization on any 2D, S3D or FoLD system
- Open standard that supports DoD needs

Workshop Objectives

- Overview of Light Field Display Applications
- Overview of LF Capture/Creation, Distribution and Display
- Update on Standardization Efforts
- Feedback and Input for Technical Report
- Assess Need for and Mission of Consortium

Generalized Light Field Workflow

Generalized Light Field Workflow

3D Data Sources / Types

- Light Field Data
 - Plenoptic Cameras
 - Camera Arrays
 - Moving Cameras
- Depth Maps (x,y,RGBD)
 - Time of Flight (ToF) Cameras
 - Structured Light Cameras
- Point Cloud
 - LiDAR

- Object Representation
 - Synthetic Aperture Radar

Digital Formats

- 3D mesh with/without textures
- CAD data
- Planar primitives
- Voxels
- MRI/CT slice data

Some 3D Standards and Activities

ISO/IEC MPEG

- 3D-HEVC (multiview + depth)
- MPEG4 Part 25

SMPTE

- 3G SDI (Stereo 3D)
- ST 2087 Depth Map Representation
- JPEG PLENO
 - Open standard in progress
 - May not support all display types

- Chromium
 - OpenGL 3D data over TCP/IP
- WebGL
 - OpenGL wrapper for browser 3D
- Open3DGC
 - MPEG 3D graphics implementation
 - Khronos Group gITF
- VR Interest Group
- W3C Open web platform for VR delivery

Visual Multimedia Applications, Data Representations and Coding Tools

Category	Functionality	Data	Coding tool	Comment
		representation		
Point cloud	3D rendering,	(x,y,z) + color	PCC	Under development in
	e.g. GIS			MPEG.
				Uniform color per point in
				all directions
3D Meshes	3D rendering,	(x,y,z) + IFS	MPEG-3DMC	Standardized for meshes
	e.g. games	connectivity +	MPEG-AFX	with non-changing
		color/texture		connectivity
Panoramic texture	360° video VR	Large texture	Discussion in	Stitched panorama
			MPEG?	demos exist. Do they use
				advanced coding tools?
Omni-Directional	360° video	ODS texture	Not available in	Google jump uses this
texture	stereo VR		JPEG/MPEG	format. Not clear how
				much coding is involved?
Microlens Light	A posteriori	(s,t,u,v)	Not available in	Are there proprietary
Field	refocus	Optional: depth	JPEG/MPEG	coding formats available?
Dense Camera	Light field	(u,v) camera	3D-HEVC:	DIBR rendering
array Light Field	display,	+ (s,t, θ,φ)	Multiview +	1D-Linear, dense camera
	Horizontal	extrinsics + depth	depth	arrangements only
	Parallax Only			
Sparse Camera	Light Field	(u,v) camera	FTV	DIBR rendering
array Light Field	display and/or	+ (s,t, θ,φ)	exploration/CfE	Targets non-Linear
	Free Navigation	extrinsics + depth	with 3D-HEVC	(1D/2D), sparse camera
			extensions	arrangements

Source: JPEG PLENO AhG Report

Field of Light Display (FoLD)

- No Vergence-Accommodation Issues
- Horizontal and (ideally) Vertical Parallax
- Images Perceptually Indistinguishable from Reality (ideally)
- Standalone Displays or Eyewear
- Commercial, Military and Government Applications

Some FoLD Types

- Holographic
 - Diffraction based MIT, SeeReal, BYU, Bikent Univ, UofA, 5G the Giga Communication Research Laboratory
- Multi-View
 - Integral array FoVI3D, Ostendo,
 - Steerable Backlight Kwangwoon University, Leia
 - Holographic stereography
 Third Dimension Technologies
 - Tensor display MIT
 - Multi-projector Holografika, USC

- Volumetric
 - Scanning/spinning Actuality, USC, LiteFast
 - Multiple LCD screens LightSpace Technologies, Looking Glass Factory, Pure Depth
 - Voxel emitting Burton (intersecting lasers), 3DIcon (up-converting with lasers)

1916 list of "scope" or "graph" machines

Phantoscope Criterioscope Biograph Cinematograph Vitascope Kinematograph Wondorscope Animatoscope Vitagraph Cosmoscope Anarithmoscope Panoramograph Katoptukum Magniscope Zoeoptotrope Phantasmagoria Projectoscope Variscope Cinograph Cinnemonograph Hypnoscope Centograph X-ograph Electroscope Cinagraphoscope Kinetoscope Craboscope Viletoscope Cinematoscope Mutoscope Cinoscope Animaloscope Theatograph Monograph Motorgraph Kineatograph

Rayoscope Motiscope Kinotigraph Phenakistoscope Venetrope Vitrescope Zinematograph Vitopticon Stinnetiscope Vivrescope Daramiscope Lobsterscope Corminograph Kineoptoscope Scenamotograph Kineograph Thromotrope Kinebleboscope Pictorialograph Kinegraphoscope Vileograph Kinevitograph Photokinematoscope Kinesetograph Mophotoscope Phototrope Movementoscope Touniatoscope Vilophotoscope Waterscope Visionscope Phonendoscope Lumiograph Heliographoscore Pantobiograph Zoetrope Chronophotographoscope

Vileocigraphoscope Pantominograph Ammotiscope Acheograph Kinographoscope Lifeoscope Sygmographoscope Kineoptoscope Cieroscope Velograph Stereoptigraph Eragraph Moto-Photoscope Zoopraxoscope Tachyscope Thaumototrope Thropograph Mimicoscope Musculariscope Involograph Shadographoscope Counterfivoscope Realiphotoscope Rythmograph Photoscope Originagraph Persistoscope Selfseminograph Getthemoneygraph Parlorgraph Phasmatrope Klondikoscope Stroboscope Chronomatograph Scenoscope Tropograph

Need for standards?

There were this many moving picture devices already by 1898.

One on the list was made up by Jenkins; the rest of the imaginative names really existed, but only one is still is use today. Can you identify those two?

Some FoLD Applications

- Cinema and Video
- Telepresence
- Design of Autos, Aircraft, Buildings, etc.
- VR/AR/MR for Gaming, Entertainment and Work
- Situational Awareness (military, commercial air control)
- Big Data Visualization (satellite, oil & gas, pharma, scientific)
- MRI, CT and Ultrasound Data

Possible Consortium Mission Statement

 Facilitate development of open streaming standards of true 3D data to all 3D and 2D displays by providing liaison between interested parties to share information, provide education and work to bridge gaps in the standardization process.

What Might a Consortium Do?

- Accomplish Tasks: Writing Report Sections, Standards Committees
- Broaden Range of Light Field Applications (DoD, government, medical)
- Newsletter, Blogs, White Papers, Webinars and Seminars to aid in:
 - Standards development
 - Commercialization
 - Industry and end-user education
- Help Develop Light Field Metrology
- Hold Annual Conference with Exhibits
- Identify Key Research Areas (maybe assist in funding)

Consortium Funding

- AFRL Support for Limited Time
 - SBIR/STTR (Small Business Innovation Research) funding
 - Very beneficial to ensure tasks are completed quickly without relying on volunteers to complete
 - TDT/ORNL one of two teams likely to bid for Phase II
- Longer Term: Dues to Support On-going Activities

Agenda

9:00	9:20	Introduction	Chris Chinnock, Insight Media	1:1	15	1:40		Walt Husak, Dolby (JPEG PLENO standardization)
9:20	9:45	A	Jon Karafin, Lytro	1:40	40	2:05	Standards	Howard Lukk, SMPTE
9:45 10:10	10.10	Acquisition	Siegfried Foessel,				(standardization)	
		Fraunhofer IIS	2.05	2.30		Arianne Hinds, CableLabs		
10.10	10.30	coffee		2.0	2.05	2.30		(MPEG standardization)
10.10	10.50				0.00	0.45	20#22	
10.00	10.00 10.55		Lloyd LaComb, Arizona State University/TIPD	2:	2:30	2:45	сопее	
10:30	10:55				0.45			
	Disalaur		Tommy Thomas, Third Dimension Technology	2:4	2:45	3:10		Jules Urbach, OTOY
10:55 11:20		Displays				More		
				3:	3:10	3:35		David Price, VR Industry Forum
11:20	11:45		Thomas Burnett, FoVI3D					
11:45	1:15	1:15 Lunch		3:3	35	4:30	Panel Discussion	Panel discussion

Logistics

- Please wear badges to facilitate networking
- Please turn cell phones off (or to vibrate)
- Speakers have 5 minutes after his/her presentation for Q&A
- Audience participation is encouraged please use microphone
- We are on a time schedule please keep that in mind especially during the coffee/tea breaks
- Presentations will be available for download after the event