~ Object Graphics lerary
(ObjGL) and the

Heterogenenous Display

Environment

October, 2017

FUV [P —

“Introduction

Thomas Burnett

CTO, founder, and primary
investigator for FoVI3P,

~15 years experience
developing rendering
solutions and architectures
for static and dynamic light-
field display systems.

Strong technical team with deep experience in optical, mechanical,
electrical and software engineering.

FV‘BD — ——
- Agenda

Review of the Challenges Posed by Streaming Media for
Field of Light Displays

Review of Two FoLD Systems

Issues with OpenGL and GPUs for Multi-view Rendering

Object Graphics Library and the Heterogeneous Display
Environment

@\/ [

Review of the Challenges Posed by
Streaming Media for Field of Light

Displays

;, /v R —
Source Master and the FolLD System

Post
Production

Cinema
Master

ewaul)
/49189y |

Video

Stereo v . <
: . . . : Source Home R =
|. 2D video is captured with the expectation " Master Master
hat the d display off ingl ' =
that the downstream display offers a single | DVD g
: :]
POInt: of V.IeV\{. . Conversion:to A
2. 3D visualization requires actual 3D real-world ‘Real’ 3D S
. D
coordinates in three-dimensional space. | (Video Camera -— T ©
| wAl
' < Games/Apps >4|

Voxels

-
%
——

|
|
Points AR

Radiance 3D Master (3D Application)‘

Polygons

SwalsAs q1o4

Other (3D Sensor >

FUV [P —

‘Typical Application Data Rendering
Flow

The client system, thus the 3D
application/render engine is tightly
bound to display particulars.

Server

2. The 3D application/render engine
controls the GPU which renders a
video stream to the display.

3. If the display architecture changes, the

3D application/render engine and
possibly the interface require
modification

%

3D Data Master

Data

o

Provides 3D data

service

e

Client System

3D

Creates a
scene and
provides

functionali
_ ty

Render Draw » GPU -
Application Engine Commands

Describes the

scene through

a set of draw
commands

~

Renders a ; ;
RGCie Provides a view
from a 1nto scene
PoV

A

F VI
- The Two SMFoLD Challenges

" "REST

Server Client
4 N
Requests
< q
3D Data Mast 2D i
itk Application Commands
Responses
8 i o o
Provides 3D data Creates a scene
service and provides
functional1 .
ty ObjGL

Field of Light
Display

S /

Provides a view
into scene

2

a)
b)

The client/server model and protocol that describes the relationship between a service

provider (server) and a consumer (client).

The display agnostic draw commands. ObjGL is intended to solve this challenge.

Architecture unknown
Location may be remote

F@V [—

Review of Two FolLD Systems

@VPDWW
- Volumetric Renderin

Want to draw a scene in
the middle of a unity

cube.

Need a diffuser and a
projection frustum

The renderer needs to know the camera projection matrix and the position and orientation of the camera (in the form of a 4x4 transform)
in normalized 3D display space.

Actuality
Systems
Perspecta
cPos: 0,0,0.5 cPos: 0.35,0,0.35 cPos: 0.5,0,0
¢Dir: 0,0.-1 cDir: -0.7,0.-0.7 cDir: -1,0.0
cUp:0,1,0 cUp:0.,1,0 cUp:0.1.0

2

field Render

Projected Hogel
Frustum

é
©

Model of MicroLens Array/

3D Maodel

ing

Light

—

Radiance Image/

“Hogel Plane”

10

F@\/ [— -

Issues with OpenGL and GPUs for
Multi-view Rendering

5'?7»‘?543—-—;’!}".’5 MELDY F/E]
-

Opengl32.dlI Graphics Card
OpenGL Driver GPU

GL Application GL Shim

Dynamic Display
Driver

Ethernet |. An OpenGL Shim is an ‘interceptor’

-~ library design to mimicand
replace/forward graphics commands.
2. In essence, the OpenGL shim highjacks
the command stream unbeknownst to
the host application.
3. Often accompanied by a display specific
companion library.

12

o0

P

1 ;‘gues with the OpenGL Shim
Concept

There is no agreement among novel display developers on which OpenGL version and/or functions to shim. Generally, most interceptor libraries are focused on the legacy fixed
function pipeline APIs defined in the OpenGL 1.0-1.5 specifications. Some of the more optimal interceptors can support later versions of OpenGL; however, the programmable
nature of later OpenGL specifications are more difficult to shim. Shaders make intercepting/shimming with confidence nearly impossible or is so highly restricted to the point where
shaders may just emulate a fixed function pipeline with little variation. In either event, intercepting OpenGL commands is typically regarded as intercepting the fixed function APls
which are considered legacy commands by most modern developers.

There are legacy fixed function APIs which are suboptimal for specifying geometry that programmers often default to because of their ease of use and readability. These immediate
mode functions perform poorly in the context of multi-view rendering. Their counterpart functions, the retained mode APIs, are far better suited for multi-view rendering; however,
the retained model APIs have evolved significantly over the course of the OpenGL specification and not every application is implemented with the best constructs; thereby reducing
render performance.

Many of the OpenGL functions and functionality are not applicable to distributed or multi-view rendering. For example, point and line rendering is computed in screen space and is

’

S S S a/»

to be converted into billboarded polygons when properly specified.

Fixed function OpenGL defines a single GL_MODELVIEW matrix which is the pre-multiplied model and view matrices. This implies that for any display that requires multi-view
rendering, the view component needs to be removed from the GL_MODELVIEW matrix or that the view matrix is specified in some other manner.

Modern OpenGL has a single active viewport and a single active view matrix; therefore, applications/render engines written in OpenGL can only render a single view to a single
destination framebuffer at a time. There is no agreed upon way within the context of OpenGL to specify a multi-view render volume.

Displays that require multi-view rendering often require much more time to complete a display frame than the host application. This requires that the host application stall and
synchronize with the render cluster. Often this situation reduces the frame rate of the host application and sacrifices host application interactivity.

Multi-viewpoint rendering becomes a responsibility of the host application which must cache the render commands and then re-render the list for each viewpoint. Therefore, the
host application must understand the exact nature of every view rendered for the display as well as any distortion corrections for any display specific optical properties.

|3

‘BD

“The Fixed Function Graphlcs Pipeline

Scene is described (’GPU Scene is rendered
to the GPU to the display
Vertices Fragments
Vertex Rasterizer Fragment
Vertices Transforms Processing | Pixels
Viewpoint i ‘_\ & ﬁ
\ Textures P
Scene is described i ™
to the GPU GPU _
Vertices Fragments Radiance Image
Vertex Rasterizer Fragment
Transforms Processing
Viewpoint i E 'ﬂ ﬁ
Textures)

Only one hogel is rasterized at a time. The viewpoint and viewport change
per hogel but the scene description remains the same.
Vertex dispatch/transform dominates pipeline. | 4

‘Magnitude of the Light-field Radiance Image

[)
Re n d e rl ng Display Size (mm) Display Frame 50% 75% 90%
Imm Hogels Resolution (rays Pixels Compression Compression Compression

| 256 x256 | 128 x 128 268,435,456 67,108,864 26,843,546
| 512x512 | 128 x 128 4,294,967,296 1,073,741,824 429,496,730
128 x 128 17,179,869,184 8,589,934,592 4,294,967,296 1,717,986,918
| 256 x256 | 512x 512 17,179,869,184 8,589,934,592 4,294,967,296 1,717,986,918
| 512x512 | 512x 512 68,719,476,736 34,359,738,368 17,179,869,184 6,871,947,674

1,024 x 1,024 512x 512 274,877,906,944 137,438,953,472 68,719,476,736 27,487,790,694

To calculate the number of pixels generated within a second in the case of an interactive display, the frame rate multiplied by the display frame size.

Challenge Desire
. Huge number of pixels to transfer. v Don’t pass pixels!
. Assumes some knowledge of the display monbrecachegeomet,
capability — Send transforms
: . Typical transform is a 4 x 4 matrix
. Typical object transform command would be in

the order of 68 (16 * 4 + 4) bytes minimum

Another issue with the pixel data is that the light-field is generally captured/generated from a particular PoV which implies that there are possible
occlusions within the light-field. If the light-field display projects from the point of view of the capture/generator, occlusions may not be apparent.
However, as one moves about the scene, these occlusions become more apparent and appears as ‘holes’ where there is no pixel content to render.
Since the nature of the FoLD rendering should be agnostic to the data, the best paradigm for display agnostic scene description is to transfer and render

polygonal/model data |5

EC:JVPDWW >

Object Graphics Library and
the Heterogeneous Display
Environment

16

Ve

~ Object Graphics Library (ObjGL)

Current Display Rendering

Server Client System

~

. Data iD Render Draw
3D Data Master ——22p " ———p GPU -
BRI Application Engine Commands

Createsa Describes the Renders a

\‘.—'/ scencand scene through SatlG Provides a view
Provides _3D data pailer -yt i frem a into scene
service functionality commands Ll Y,

Displays are data agnostic. The 3D application 1s responsible for

tetching/reading data and describing the data by use of a “‘Render

Engme’ to the GPU wia a series of draw commands. The GPU in

turn, renders a scene and produces a video feed to a display. The
display 1s unaware of the video content.

Heterogeneous Display Environment

—» MvPU @AR/VR

Server Client Syslem
MvPU
3D DataMaster 281250 3D Igpigy, | ObGL pilieit
Application Commands MvPU
o MvPU
o W Creates a scene Sml utes
= ; s and provides rendering to
Provides 3D data finetionality remote
service ; displays
MvPU
MvP1]

s

3D displays are data agnostic. The 3D application 1s responsible
for fetching/readimg data and describing the data using ObjGL to
a heterogeneous display environment. The client application
unawarc of the rendering concerns of the 3D display. Each
display has an array of Multi-view Processing Units (MvPU) that
render display particular content. The 3D display 1s unaware of
the nature of the content.

ObjGL is a FoLD (Field of Light Display) agnostic graphics application interface that can be used in a heterogeneous 3D
display environment. It is intended to be a modern replacement for OpenGL (currently, the fixed function pipeline) yet with
higher level functionality. |7

F VI

Control

Cache

Render

Clear Cache Viewpoint Activate Light

Finish Cache View Volume Bind Materid
Cache Light Render VertexLst
Cache Materid Deactivate Light
Cache VertexLst Bind Texture
Cache Texture L ook

Remove Viewpoint

Survey

Remove View Volume

Remove Texture

Remove Light

Remove Material

Remove VertexLst

ObjGL Instructions: Control, Cache
and Render

Cache Material
Cache Vertex List
Cache Light
Cache Viewpoint
Cache View Volume
Clear
Activate Light
Bind Material
Render Vertex List
Finish
Cache Material2
Cache Vertex List2
Update Viewpoint
Clear
Activate Light
Bind Material

Render Vertex List
Deactivate Light
Bind Material2
Render Vertex List2
Finish

Remove Material

Remove Vertex List

Remove Light

Remove Viewpoint

Remove View Volume

|18

Vi
First-Person and Dlsplay Centric

 boLbWiow s
IeWS

% "
ﬁ‘ lr\j ﬂ, <'.::

]

* First Person Perspective
The first-person perspective renders the scene
relative to a single viewer. The first-person
view is the normal view users expect when
viewing any 2D video source or 2D/3D game
on a standard 2D monitor.

isplay Centric Perspective

The display centric perspective defines a
position and orientation of a view volume
whereby the scene is rendered from the
perspective of the display (as opposed to the
viewer). The view volume definition consists of
the half-widths of a bounding rectangle and a
model transform. A display that renders
outward in a cylindrical or spherical sense from
the center of a defined volume will require a
display centric volumetric definition.

19

F\/\/ S

“Render Acceleration Concepts

* Foreground/Background Segmentation
* Level of Detail

e Data Phasing o
* Ciriticality

® Bounding Volume

" LoD: 3
Full 1"‘%&“"‘ Vertices: 25
Resolution i’ﬂﬂ\ {w‘qr‘ Triangles: 32

LoD: 2 k
Vertices: 9) -
Triangles: 8

Resolutio LO}—): 1
VA Vertices: 4
Triangles: 2

20

~ Application ObjGL Thread Model

Application (Main) Thread

Data Creates and manages 3D
_____ scene. Interacts with user.
Physics and collisions.

N
C%D (Scene (o b4) ObjGL Manager Thread

- Frame =
Database Cache & Binary Manages Scene Database and
Render Command. Distributes commands
Commands
[— —an
_ S _ Cache & Render
¢ Gézg E:S Msgs to Multi-
Msg view Renderers
Database
Sync/Cache Reqs
T from Multi-view
Renderers

Local Monitor

21

*“---—"-u—--’-._...._:. - g S

fpplications and Render Client

Application
ObjGL Host Application
ZMQ ZMQ ZMQ
LfRenderClient 1 LfRenderClient 2
Stereo Light Field Display
3D
BIEVII 0 U .

First-Person View Display Centric View 22

S

"REST

Client

Interfaces

R

Panel —
Manager LiD %
’ —
g Panel

Requests
Battle B Battle
s - wilation Visualization
Responses » Application
[ObjGL ‘]"
. - sglTF < oM D R
Simulates and "y Shataing Creates a scene
s d provides ‘
streams a Soikes and p . +
description of a SCBY €
battlespace functionality on D
physics the BVC

BVC

\@ARJVR

A: Host BattleSim Application (Frame Rate: 60 fps)

B: Remote BattleSim Visualization (Frame Rate: 26.58 fps)

C: FoVI 3D L{D Light-field Render (Single Modulator Frame Rate: 2.25 fps)
D: Leia 3D Light-field Render (Frame Rate: 6.67 fps)

23

