
Your logo here

October, 2017

Your logo here

Introduction

Thomas Burnett
CTO, founder, and primary
investigator for FoVI3D.
~15 years experience
developing rendering
solutions and architectures
for static and dynamic light-
field display systems.
tburnett@fovi3D.com

2

Thomas Burnett
CTO, founder, and primary
investigator for FoVI3D.
~15 years experience
developing rendering
solutions and architectures
for static and dynamic light-
field display systems.
tburnett@fovi3D.com

Strong technical team with deep experience in optical, mechanical,
electrical and software engineering.

Your logo here

Agenda
 Review of the Challenges Posed by Streaming Media for

Field of Light Displays
 Review of Two FoLD Systems
 Issues with OpenGL and GPUs for Multi-view Rendering
 Object Graphics Library and the Heterogeneous Display

Environment

 Review of the Challenges Posed by Streaming Media for
Field of Light Displays
 Review of Two FoLD Systems
 Issues with OpenGL and GPUs for Multi-view Rendering
 Object Graphics Library and the Heterogeneous Display

Environment

 Review of the Challenges Posed by Streaming Media for
Field of Light Displays
 Review of Two FoLD Systems
 Issues with OpenGL and GPUs for Multi-view Rendering
 Object Graphics Library and the Heterogeneous Display

Environment

3

Your logo here

Review of the Challenges Posed by
Streaming Media for Field of Light

Displays

Review of the Challenges Posed by
Streaming Media for Field of Light

Displays

Review of the Challenges Posed by
Streaming Media for Field of Light

Displays

4

Your logo here

Source Master and the FoLD System
Video

Stereo

Still

Post
Production

Source
Master

Cinema
Master

Home
Master

Mobile

Cable

DVD

Satellite

Video Camera

Games/Apps

3D Master 3D Application

3D Sensor

Points

Radiance

Polygons

Voxels

Other

Theater/
Cinem

a
M

obile
2D

Display
FoLD System

s

Conversion to
‘Real’ 3D

Stereo
Display

1. 2D video is captured with the expectation
that the downstream display offers a single
point of view.

2. 3D visualization requires actual 3D real-world
coordinates in three-dimensional space.

Video

Stereo

Still

Post
Production

Source
Master

Cinema
Master

Home
Master

Mobile

Cable

DVD

Satellite

Video Camera

Games/Apps

3D Master 3D Application

3D Sensor

Points

Radiance

Polygons

Voxels

Other

Theater/
Cinem

a
M

obile
2D

Display
FoLD System

s

Conversion to
‘Real’ 3D

Stereo
Display

5

Video

Stereo

Still

Post
Production

Source
Master

Cinema
Master

Home
Master

Mobile

Cable

DVD

Satellite

Video Camera

Games/Apps

3D Master 3D Application

3D Sensor

Points

Radiance

Polygons

Voxels

Other

Theater/
Cinem

a
M

obile
2D

Display
FoLD System

s

Conversion to
‘Real’ 3D

Stereo
Display

Your logo here

Typical Application Data Rendering
Flow
Typical Application Data Rendering
Flow

1. The client system, thus the 3D
application/render engine is tightly
bound to display particulars.

2. The 3D application/render engine
controls the GPU which renders a
video stream to the display.

3. If the display architecture changes, the
3D application/render engine and
possibly the interface require
modification

6

1. The client system, thus the 3D
application/render engine is tightly
bound to display particulars.

2. The 3D application/render engine
controls the GPU which renders a
video stream to the display.

3. If the display architecture changes, the
3D application/render engine and
possibly the interface require
modification

Your logo here

The Two SMFoLD Challenges

ObjGL

1. The client/server model and protocol that describes the relationship between a service
provider (server) and a consumer (client).

2. The display agnostic draw commands. ObjGL is intended to solve this challenge.
a) Architecture unknown
b) Location may be remote

7

Your logo here

Review of Two FoLD SystemsReview of Two FoLD Systems

8

Your logo here

Volumetric Rendering

9

Actuality
Systems
Perspecta

Your logo here

Light-field Rendering

10

Zebra Imaging
ZScape Motion Display

Your logo here

Issues with OpenGL and GPUs for
Multi-view Rendering

Issues with OpenGL and GPUs for
Multi-view Rendering

11

Your logo here

The OpenGL Shim

1. An OpenGL Shim is an ‘interceptor’
library design to mimic and
replace/forward graphics commands.

2. In essence, the OpenGL shim highjacks
the command stream unbeknownst to
the host application.

3. Often accompanied by a display specific
companion library.

12

1. An OpenGL Shim is an ‘interceptor’
library design to mimic and
replace/forward graphics commands.

2. In essence, the OpenGL shim highjacks
the command stream unbeknownst to
the host application.

3. Often accompanied by a display specific
companion library.

Your logo here

Issues with the OpenGL Shim
Concept
Issues with the OpenGL Shim
Concept
 There is no agreement among novel display developers on which OpenGL version and/or functions to shim. Generally, most interceptor libraries are focused on the legacy fixed

function pipeline APIs defined in the OpenGL 1.0-1.5 specifications. Some of the more optimal interceptors can support later versions of OpenGL; however, the programmable
nature of later OpenGL specifications are more difficult to shim. Shaders make intercepting/shimming with confidence nearly impossible or is so highly restricted to the point where
shaders may just emulate a fixed function pipeline with little variation. In either event, intercepting OpenGL commands is typically regarded as intercepting the fixed function APIs
which are considered legacy commands by most modern developers.

 There are legacy fixed function APIs which are suboptimal for specifying geometry that programmers often default to because of their ease of use and readability. These immediate
mode functions perform poorly in the context of multi-view rendering. Their counterpart functions, the retained mode APIs, are far better suited for multi-view rendering; however,
the retained model APIs have evolved significantly over the course of the OpenGL specification and not every application is implemented with the best constructs; thereby reducing
render performance.

 Many of the OpenGL functions and functionality are not applicable to distributed or multi-view rendering. For example, point and line rendering is computed in screen space and is
not 3D. This implies that any application that does native OpenGL point and line rendering cannot image points and lines for a light-field display; however, points do have the ability
to be converted into billboarded polygons when properly specified.

 Fixed function OpenGL defines a single GL_MODELVIEW matrix which is the pre-multiplied model and view matrices. This implies that for any display that requires multi-view
rendering, the view component needs to be removed from the GL_MODELVIEW matrix or that the view matrix is specified in some other manner.

 Modern OpenGL has a single active viewport and a single active view matrix; therefore, applications/render engines written in OpenGL can only render a single view to a single
destination framebuffer at a time. There is no agreed upon way within the context of OpenGL to specify a multi-view render volume.

 Displays that require multi-view rendering often require much more time to complete a display frame than the host application. This requires that the host application stall and
synchronize with the render cluster. Often this situation reduces the frame rate of the host application and sacrifices host application interactivity.

 Multi-viewpoint rendering becomes a responsibility of the host application which must cache the render commands and then re-render the list for each viewpoint. Therefore, the
host application must understand the exact nature of every view rendered for the display as well as any distortion corrections for any display specific optical properties.

 There is no agreement among novel display developers on which OpenGL version and/or functions to shim. Generally, most interceptor libraries are focused on the legacy fixed
function pipeline APIs defined in the OpenGL 1.0-1.5 specifications. Some of the more optimal interceptors can support later versions of OpenGL; however, the programmable
nature of later OpenGL specifications are more difficult to shim. Shaders make intercepting/shimming with confidence nearly impossible or is so highly restricted to the point where
shaders may just emulate a fixed function pipeline with little variation. In either event, intercepting OpenGL commands is typically regarded as intercepting the fixed function APIs
which are considered legacy commands by most modern developers.

 There are legacy fixed function APIs which are suboptimal for specifying geometry that programmers often default to because of their ease of use and readability. These immediate
mode functions perform poorly in the context of multi-view rendering. Their counterpart functions, the retained mode APIs, are far better suited for multi-view rendering; however,
the retained model APIs have evolved significantly over the course of the OpenGL specification and not every application is implemented with the best constructs; thereby reducing
render performance.

 Many of the OpenGL functions and functionality are not applicable to distributed or multi-view rendering. For example, point and line rendering is computed in screen space and is
not 3D. This implies that any application that does native OpenGL point and line rendering cannot image points and lines for a light-field display; however, points do have the ability
to be converted into billboarded polygons when properly specified.

 Fixed function OpenGL defines a single GL_MODELVIEW matrix which is the pre-multiplied model and view matrices. This implies that for any display that requires multi-view
rendering, the view component needs to be removed from the GL_MODELVIEW matrix or that the view matrix is specified in some other manner.

 Modern OpenGL has a single active viewport and a single active view matrix; therefore, applications/render engines written in OpenGL can only render a single view to a single
destination framebuffer at a time. There is no agreed upon way within the context of OpenGL to specify a multi-view render volume.

 Displays that require multi-view rendering often require much more time to complete a display frame than the host application. This requires that the host application stall and
synchronize with the render cluster. Often this situation reduces the frame rate of the host application and sacrifices host application interactivity.

 Multi-viewpoint rendering becomes a responsibility of the host application which must cache the render commands and then re-render the list for each viewpoint. Therefore, the
host application must understand the exact nature of every view rendered for the display as well as any distortion corrections for any display specific optical properties.

13

Your logo here

The Fixed Function Graphics Pipeline

14

Your logo here

Magnitude of the Light-field Radiance Image
Rendering Display Size (mm)

1mm Hogels
Directional

Resolution (rays)
Display Frame

(Pixels)
256 x 256 128 x 128 268,435,456

50%
Compression

75%
Compression

90%
Compression

134,217,728 67,108,864 26,843,546

Display Size (mm)
1mm Hogels

Directional
Resolution (rays)

Display Frame
(Pixels)

256 x 256 128 x 128 268,435,456
512 x 512 128 x 128 4,294,967,296

1,024 x 1,024 128 x 128 17,179,869,184
256 x 256 512 x 512 17,179,869,184
512 x 512 512 x 512 68,719,476,736

1,024 x 1,024 512 x 512 274,877,906,944

50%
Compression

75%
Compression

90%
Compression

134,217,728 67,108,864 26,843,546
2,147,483,648 1,073,741,824 429,496,730
8,589,934,592 4,294,967,296 1,717,986,918
8,589,934,592 4,294,967,296 1,717,986,918
34,359,738,368 17,179,869,184 6,871,947,674

137,438,953,472 68,719,476,736 27,487,790,694

To calculate the number of pixels generated within a second in the case of an interactive display, the frame rate multiplied by the display frame size.

Desire
• Don’t pass pixels!

– Precache geometry
– Send transforms

• Typical transform is a 4 x 4 matrix
• Typical object transform command would be in

the order of 68 (16 * 4 + 4) bytes minimum

Challenge
• Huge number of pixels to transfer.
• Assumes some knowledge of the display

capability.

15

Desire
• Don’t pass pixels!

– Precache geometry
– Send transforms

• Typical transform is a 4 x 4 matrix
• Typical object transform command would be in

the order of 68 (16 * 4 + 4) bytes minimum

Challenge
• Huge number of pixels to transfer.
• Assumes some knowledge of the display

capability.

Another issue with the pixel data is that the light-field is generally captured/generated from a particular PoV which implies that there are possible
occlusions within the light-field. If the light-field display projects from the point of view of the capture/generator, occlusions may not be apparent.
However, as one moves about the scene, these occlusions become more apparent and appears as ‘holes’ where there is no pixel content to render.
Since the nature of the FoLD rendering should be agnostic to the data, the best paradigm for display agnostic scene description is to transfer and render
polygonal/model data

Your logo here

Object Graphics Library and
the Heterogeneous Display

Environment

Object Graphics Library and
the Heterogeneous Display

Environment

16

Your logo here

Object Graphics Library (ObjGL)
Heterogeneous Display Environment

Current Display RenderingCurrent Display Rendering

17

ObjGL is a FoLD (Field of Light Display) agnostic graphics application interface that can be used in a heterogeneous 3D
display environment. It is intended to be a modern replacement for OpenGL (currently, the fixed function pipeline) yet with

higher level functionality.

Your logo here

ObjGL Instructions: Control, Cache
and Render
ObjGL Instructions: Control, Cache
and Render

Control Cache Render

Clear Cache Viewpoint Activate Light
Finish Cache View Volume Bind Material

Cache Light Render VertexLst
Cache Material Deactivate Light
Cache VertexLst Bind Texture
Cache Texture Look
Remove Viewpoint Survey
Remove View Volume
Remove Texture
Remove Light
Remove Material
Remove VertexLst

18

Control Cache Render

Clear Cache Viewpoint Activate Light
Finish Cache View Volume Bind Material

Cache Light Render VertexLst
Cache Material Deactivate Light
Cache VertexLst Bind Texture
Cache Texture Look
Remove Viewpoint Survey
Remove View Volume
Remove Texture
Remove Light
Remove Material
Remove VertexLst

Your logo here

First-Person and Display Centric
Views
First-Person and Display Centric
Views
 First Person Perspective

The first-person perspective renders the scene
relative to a single viewer. The first-person
view is the normal view users expect when
viewing any 2D video source or 2D/3D game
on a standard 2D monitor.

 Display Centric Perspective
The display centric perspective defines a
position and orientation of a view volume
whereby the scene is rendered from the
perspective of the display (as opposed to the
viewer). The view volume definition consists of
the half-widths of a bounding rectangle and a
model transform. A display that renders
outward in a cylindrical or spherical sense from
the center of a defined volume will require a
display centric volumetric definition.

 First Person Perspective
The first-person perspective renders the scene
relative to a single viewer. The first-person
view is the normal view users expect when
viewing any 2D video source or 2D/3D game
on a standard 2D monitor.

 Display Centric Perspective
The display centric perspective defines a
position and orientation of a view volume
whereby the scene is rendered from the
perspective of the display (as opposed to the
viewer). The view volume definition consists of
the half-widths of a bounding rectangle and a
model transform. A display that renders
outward in a cylindrical or spherical sense from
the center of a defined volume will require a
display centric volumetric definition.

19

Your logo here

Render Acceleration Concepts
 Foreground/Background Segmentation
 Level of Detail
 Data Phasing

 Criticality
 Bounding Volume

 Foreground/Background Segmentation
 Level of Detail
 Data Phasing

 Criticality
 Bounding Volume

 Foreground/Background Segmentation
 Level of Detail
 Data Phasing

 Criticality
 Bounding Volume

20

Your logo here

Application ObjGL Thread Model

21

Your logo here

Applications and Render Clients

Application

22

3D
Displays

First-Person View Display Centric View

Your logo here

ObjGL Demonstration

23

