Light Field Displays:
From Current
Developments to the
Next Generation

Matthew Hamilton
Systems Engineer
SMFoLD Workshop, October
2017

What is a Light Field Display?

Essentially, the best reproduction of the radiance eyes encounter normally

Geng, J. (2013). Three-Dimensional display technologies. Advances in Optics and Photonics, 5(2), 131.

What is a Light Field Display?

- Perceptual cues provided by light field vs. 2D display
 - Accommodation
 - Convergence
 - Motion Parallax
 - Binocular disparity

Key Concept: Resolution at Depth

 Depth of field of display – range of depths that can be reproduced at maximum resolution

320x240 3D display, 90° field of view

Matthias Zwicker, Wojciech Matusik, Fredo Durand, and Hanspeter Pfister. Antialiasing for Automultiscopic 3D Displays. Eurographics Symposium on Rendering 2006.

Key Concept: Resolution at Depth

- Good effective depth resolution requires high angular resolution
 - Number of views in current displays give very small DoF
 - Worse in practice due to optical imperfections, etc.

128x128 views

512x512 views

(simulated 320x240 3D display, 90° field of view, observer @ 0.6m)

Avalon Holographics

Ideal 3D Display

- Banks et al. concept of Turing Test for 3D Displays:
 - "A person views input that comes either from a direct view of the real world or from a simulated view of that world presented on a display. He or she has to decide: real or display?"
- Geng: Perfect display should function as "window to the world"

Banks, M. S., Hoffman, D. M., Kim, J., & Wetzstein, G. (2016). 3D Displays. Annual Review of Vision Science, 2(1), 397–435.

Geng, J. (2013). Three-Dimensional display technologies. Advances in Optics and Photonics, 5(2), 131.

Ideal 3D Display

- No displays meet the ideal criteria... YET
- Main shortcomings:
 - Objects become blurred at distance
 - Lack of correct focus cues
 - Small Field of View (FOV)
 - Spatial resolution not "retina"
 - Various artifacts... lots to optimize

Review of Light Field Displays

Overview

- Group Display vs. Personal Head-Mounted
- Refractive (Integral Imaging)
- Diffractive
- Temporally-multiplexed
- Stacked Displays
- Projection based

Head-Mounted vs. Stand-Alone

- Perceptual cues provided by current VR HMD (similar to FoLD):
 - Accommodation
 - Convergence
 - Motion Parallax
 - Binocular disparity
- Accommodation-convergence conflict
 - Are light fields truly needed for HMD?
 - Maybe, maybe not...

Head-Mounted vs. Stand-Alone

- Recently shown: Accommodation can be driven by adaptive focus displays
- AC-conflict can be eliminated, shown experimentally
- Still may not provide focus cues correctly

(2017) Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays Nitish Padmanaban, Robert Konrad, Tal Stramer, Emily A. Cooper, and Gordon Wetzstein

Integral Imaging (Refractive)

Advances in three-dimensional integral imaging: sensing, display, and applications [Invited]Xiao Xiao, Bahram Javidi, Manuel Martinez-Corral, and Adrian Stern Applied Optics Vol. 52, <u>Issue 4</u>, pp. 546-560 (2013)

Integral Imaging (Refractive)

- Inherent spatial-angular resolution trade-off
 - Larger lens -> more pixels underneath
- Limited field of view (limits of lenses)
 - Multiple lenses can increase to ~90°
- Difficult to achieve large depth of field;
 - Quickly hit pixel size limit
- Collimation can effect resolution at depth

Integral Imaging (Refractive)

- Angular calibration challenge:
 - Difficult to make ideal lens
 - Imperfections further degrade effective depth resolution of display
 - Calibration can correct, but can this scale to larger and larger direction pixel numbers?

Zahir Y. Alpaslan, Hussein S. Ei-Ghoroury, "Small form factor full parallax tiled light field display", Proc. SPIE 9391, Stereoscopic Displays and Applications XXVI, 93910E (17 March 2015)

Integral Imaging (Near-Eye Display)

- Angular-space trade-off flips
- Limited FOV, due to screen size (micro display)
 - Require larger displays with greater pixel density to compare with current VR resolution
- Some blur cues, reduces AC-conflict
- Does not require optics of conventional VR

<u>Near-Eye Light Field Displays</u>. Douglas Lanman, David Luebke. ACM Transactions on Graphics (SIGGRAPH Asia 2013 Proceedings), Hong Kong (November 2013).

Multi-Layered Approach

- Stacked high speed, LCD attenuation layers with direction backlight (integral imaging based)
 - Based on superposition of light, rather than direct representation of each ray (more rays per pixel, thus compressive)
 - Temporal modulation and attenutation used

G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar. Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting. Proc. of SIGGRAPH 2012 (ACM Transactions on Graphics 31, 4), 2012

Multi-Layered Approach

- Can overcome spatial-angular trade-off
 - Scaling not limited by pixel size
 - Additional layers provide
- FOV still limited by directional backlight layer
- Require complex optimization to produce image
 - Not suitable for interactive content.
 - May be OK for static content

G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar. Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting. Proc. of SIGGRAPH 2012 (ACM Transactions on Graphics 31, 4), 2012

Multi-Layered Approach

- Near-eye Display based on this approach
- Blur cues provided
- Requires less expensive optimization computation
 - Still has latency issues

F. Huang, K. Chen, G. Wetzstein. "The Light Field Stereoscope: Immersive Computer Graphics via Factored Near-Eye Light Field Displays with Focus Cues", SIGGRAPH (Transactions on Graphics 33, 5), 2015.

Diffractive Approach

- Wavelength-scale diffraction gratings
- Advantage: Can direct light at each pixel at any direction
 - Design for large FOV or small eyebox, arbitrary light distribution
- Advantage: Diffractive backlight allows switch
 - 2D-3D mode possible
- Limitation:
 - Size (diffractive slits must be on order of wavelength of light), how to scale to smaller pixels?
 - Large FWHM would not work well with higher view density

Fattal, D., Peng, Z., Tran, T., Vo, S., Fiorentino, M., Brug, J., & Beausoleil, R. G. (2013). A multi-directional backlight for a wide-angle, glasses-free 3D display. Nature 495, 348-351 (March 2013).

Volumetric Display Approach

- Additive layers (vs. multiplicative layers)
- Interesting, useful effect
 - Appear quite useful in medical visualization use case or other 3D field visualizations
- Will fail Turing Test in many cases
 - Cannot support occlusion, specular highlights, other effects

Temporal Multiplexing Approach

- Avoid spatial-angular trade-off
- One approach:
 - Dynamic system of multiple lenses
 - Horizontal-only parallax;
 - 40-90 views, ~50° field of view
- Mechanical movement would likely present calibration and longevity issues...

"The solution to glasses-free high-resolution 3D Displays" White Paper, Zeckotek 3D Display.

Projection-based Approach

- Large FOV can be achieved (up to 180°)
- Light distribution manipulated easily by altering projector positioning
 - Flexibility to design group view type display (Holografika) or fixed observer position display (Third Dimension Technology)
- Existing seem to be limited to horizontal-only parallax
 - Can achieve >80 views
 - Still requires large data to drive display

Projection-based Approach

- Could scale to full parallax, bandwidth an issue
- Quality scaling limited by projector size

Jurik, J., Jones, A., Bolas, M., & Debevec, P. (2011). Prototyping a light field display involving direct observation of a video projector array. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

Summary of Existing Displays

- Spatial vs. angular resolution trade-off a problem
- Still too low angular resolution.
- Fail 3D Display Turing Test on simple grounds:
 - Lack of focus cues
 - Lack of effective depth of field

Next Generation Displays

Avalon Holographics 2017-10-02

Core Display Design: Targets for Future

- Denser pixels on larger control substrates (< 5 micron, scale to > 24 inch panels)
- Microdisplays already close (single digit microns), need to scale to larger substrates
- Larger field of view (~150 degrees)

Yield and Fault Tolerance

- Dead pixels only visible in small range of views
 - Multiple Views per eye
 - Multiple eyes per observer
 - Almost impossible to see single dead pixel
- Individual faults do not hurt yield

Yield and Fault Tolerance

- Only fault clusters hurt yield
 - Lose 3 adjacent pixels, becomes visible

Optics: Challenges for the Next Generation

- High-performing optics (sub-degree widths)
- Smaller sizes for denser control of light
 - Tolerances important wrt calibration issues
- Promising work in nanoscale optics:
 - Cappasso group @ Harvard
 - Faraon group @ Caltech

Theory of Asymptotic Effective Resolution at Depth

- DoF concept is observer-independent
 - Focus: light field representation, not what a particular observer may see
- Developed observer-based method to estimate resolution at depth
- Can calculate lower bound asymptotic resolution (AR):

• AR =
$$\frac{wN}{Z_0 2 \tan(\frac{\theta}{2})}$$

w - display width

N – views in one direction

Zo – observer distance from display

9 - field of view

Theory of Asymptotic Effective Resolution at Depth

3D Display: 60cmx48 cm, 320x240, 90 degree FOV, Observer @ 60cm.

Theory of Asymptotic Effective Resolution at Depth

 Implies there might be "enough" angular resolution given a target spatial resolution and FOV and an observer position:

•
$$N = \frac{M Z_0 \tan(\frac{\theta}{2})}{w}$$

- Gives straight line plot of resolution with depth
- Effective bound will degrade if observer is further
- Must be verified in practice, on real displays

Bandwidth: Challenges for the Next Generation

- Massive bandwidth required. How to drive to display for both interactive (rendering) live (video) and static content (videos)?
- Transform-based approaches trouble for interactive applications
- Entire light field (Tb) must exist a priori, truly only need the light field at the display itself, before pixels

Graziosı, D. B., Alpaslan, Z. Y., & Eı-Ghoroury, H. S. (2015). Depth Assisted Compression of Full Parallax Light Fields. Proc. SPIE 9391, Stereoscopic Displays and Applications XXVI, (FEBRUARY), 93910Y–93910Y–15.

Bandwidth: Challenges for the Next Generation

- Graziosi et al. approach to sub-sampling light field
- Does not yield guaranteed compression rate Still must resort to transform method for some cases
- Future: fully general, completely sub-sampling approach possible, can have bounded compression rates

Graziosı, D. B., Alpaslan, Z. Y., & Eı-Ghoroury, H. S. (2015). Depth Assisted Compression of Full Parallax Light Fields. Proc. SPIE 9391, Stereoscopic Displays and Applications XXVI

Conclusion

- Many existing approaches, many clever ideas as starting points
- Still suffer from quality issues
 - Likely why widespread adoption is limited
- Does appear to be "enough" resolution to have high quality display
- Challenges must be overcome to meet consumer expectations for a natural experience without noticeable/relevant limitations or physiological issues

Questions?

